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Transient Analysis of Systems with Exponential
Transmission Lines
JAMES L. HILL AND DAVID MATHEWS

Abstract—Two computer solutions are given for pulse propaga-

tion along exponentially tapered transmission lines with arbitrary
nonlinear sending and receiving networks. The solutions allow series

and shunt loss terms per unit of length of the tine. The method of
characteristics is shown to be computationally superior to the cubic

spline method in terms of accuracy and efficiency.

INTRODUCTION

T HE LITERATURE on the transient analysis of systems

connected by transmission lines is rich indeed. Methods

of analysis include Laplace transforms [1], finite differences

[2], [3], and Bergeron’s method of characteristics [4], [5]. The

method of characteristics was extended to treat
transmission-line problems with ground return (frequency-

dependent parameters) [6], [7]. The Laplace transform

method is limited to transmission lines with particular end

conditions. The finite-difference solutions suffer from

discretization ripple associated with replacing a distributed

system by a lumped-parameter one. The method of charac-

teristics maintains the wave character of the solutions and

allows’ the ends to be terminated by general networks.

The exponential transmission line (ETL) has received

considerable attention in the past four decades as an

example of nonuniform transmission lines. A historical

bibliography [8] establishes the literature available up to

1955. Applications of nonuniform and, in particular, expo-

nential transmission lines have included impedance match-

ing sections [9]–[ 11], traveling wave transformers, and res-

onators [12], [13]. In all of the previously cited literature, the

ETL was investigated in the frequency domain. Transients

in nonuniform lines have been attacked by transform

methods for special end conditions [14]. A moment method

has been employed to treat lines with linear taper [15].

The application that prompted this work involved an

ETL as a transformer between a nonlinear sending network

and a linear receiving network. The transient response of

this system was required. To treat this problem, two

methods of analysis were considered: cubic spline represen-

tation [16] and Bergeron’s characteristics [17].

The transient-response problem is solved by the two

approaches (splines and characteristics). The spline method

suffers from the same discretization ripple found in finite-

difference solutions and is less computationally efficient
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than the method of characteristics. The method of character-

istics does not produce the troublesome ripple and it

maintains the rise time of the propagating pulse.

THE DYNAMIC SYSTEM

The dynamic system of interest consists of a sending

network and a receiving network connected by an ETL. The

system is sketched in Fig. 1. S(t ~),l?(t ~) are the state vectors

of the sending and receiving networks. The functions F,(t ~,$

and F.(t @) are vector-valued functions which define the

derivatives of S(t ~) and R(t ~). The last member of the state

vector S(tl ) must be either the input voltage V(OJ ~) or

current I(O,r ~) of the ETL. Likewise, the output voltage

V(l,tl ) or current I(l,t ~) must be the last member of the state

vector R(tl ). The functions F,(t #) and F,(t @) may be

nonlinear.

GOVERNING EQUATIONS OF THE SYSTEM

The sending and receiving networks are governed by sets

of nonlinear first-order differential equations of the follow-

ing form:

s= F,(tl,s) (1)

and

R = Fr(tl,R) (2)

where the functions F,(tl,S) and F,(t ~,l?) are sufficiently

smooth to insure the existence of unique solutions to the

initial value problem.

The ETL is governed by the standard transmission-line

equations as given by Johnson [18]:

(?V

ax ~
—+2+RI=0

atl

av 81

cz+Gv+az=O

(3)

(4)

where V(x ~,tJ and 1(x ~,t~) have been previously defined,

and C(X1 ), L(x 1),R(x ~),and G(x ~)are the shunt capacitance,
series inductance, series resistance, and shunt conductance

per unit of length of the line, respectively.

For an ETL, the electrical properties vary as follows:

C(xl) = COe-a’l

L(x, ) = Loe&”

R(X ~) and G(x ~) are arbitrary (5)

where CO and Lo are the values of the capacitance and

inductance at .x~ = O. The parameter u defines the taper of

the ETL.
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Fig. 1. The dynamic system.

The cubic spline representation reduces theand tem~oral characteristics.For convenience, dimensionless spatial

coordinates are introduced into (3)-(5) by” the partial differential equati&s to ‘sets of linear ordinary.,. ,
transformation first-order differential equations. The method of character-

Xl=lx t~ = &zJt.
istics involves integrating the partial differential equations

‘6) along their characteristics. These two approaches are pre-

Equation (5) becomes

C(x) = COe-2Bx

L(x) = LO e20x

R(x) = R(XJ

G(x) = @xl)

where

fl = cd/2.

Equations (3) and (4) become

g + 44:+ R(x)l = o (8)

{

j=k

@j(Xk) = ajk = & ~ # k for j,k=l,2, ””, n

~ + G(x)Z(X)V + Z(x); = O (9)

at the nodes and all have vanishing second-order derivatives
where

r

at x = O and x = 1. This will allow the functions v(x,t) and

Lo 2P. = Z. ezox.
I(x,t) to have nonzero values and slopes at the ends of the

Z(x) = ~ e ETL.

The functions V(x,t) and l(x,t) are approximated as
Because the speed of propagation of a weakl signal along

a transmission line is given by
V(X,t) = ~ Oj(x)q(t) (lo)

Cp = [L(XJC(X1)]-1’2 = (LO CO)-1’2
j= 1

sented in the next two sections.

CUBIC SPLINE REPRESENTATION

The voltage V(x,t) and current I(x,t) are discretized by

their values at a set of nodes along the ETL. The functions

V(x,t) and I(x,t) are assumed to vary as cubic spline

(7) functions r#j(x) defined for the set of nodes x, on the interval

0< x <1 as described by Ahlberg et al. [16]. The functions

@j(x) are sectionally cubic and have continuous derivatives
through the second order over the interval O < x <1. The

spline functions @j(x) take on the values of the Kronecker

delta

it is constant for an ETL. The unit of the dimensionless time t

corresponds to the time required for a signal to propagate a

distance 1 along the ETL.
The calculation of the dynamic response of the ETL with

nonlinear terminal networks requires the solution of the sets

of ordinary differential equations (1) and (2) and partial

differential equations (8) and (9). Numerically, the set of

ordinary differential equations presents no difficulties; the

equations can be solved by any standard method ofnumeri-

cal integration. The partial differential equations are treated

here by two distinctly different methods: 1) cubic spline

representation of the spatial variation and 2) the method of

n

l(X,t) = ~ oj(x)~j(t). (11)

j= 1

The unknowns ~<t) and Ij(t) are the physical values of V(x,t)
and Z(x,t) at the node xj. Substituting (10) and (11) into (8)

and (9) yields

n

Z [4XX)V+ ‘(x)@j(x)ij+ ‘(XMAXPJ = ‘l(xJ)(12)

j= 1

j$,[dj(x)~j + G(x)z(x)4j(x)v + z(x)~(x)~jl

= e2(x,t). (13)

1 Continuous across the wavefront but has a discontinuity in the first
Equations (12) and (13) are not identically satisfied as

derivative. indicated by the error terms e ~(x,t) and e2(x,t ). Obtaining a



HILL AND MATHEWS : TRANSIENT ANALYSIS OF SYSTEMS

determinate set of equations requires that the errors el(x,t)

and ez(x,t) vanish at the nodes xi, i = 1,2,”””, n. This yields

n

j~l fi(xi)v + ‘(xi)ii + ‘(Xi)Ii = O (14)

pi+ G(xi)Z(xi)~ + ~ Z(xi)(#$(xi)lj =: O,
j=l

i=l,2, .””, iz. (15)

Equations (14) and (15) represent a set of first-order linear

differential equations for the determination of ~(t) and l~t).

Equations (l), (2), (14), and (15) now represent the total

system. There is a certain redundancy in this collective set of

equations. Because either VI(t) or I ~(t) is a member of the

state vector S(t) of the sending network, equation (1)

furnishes an expression for either VI or 11, depending upon

which is included in S, If Vi(t) is the last member of S, the last

of (1) for ~1 is used and the first of (14) is discarded. On the

other hand, if I ~ is a member of S, the first of (15) is

discarded. Likewise, either the last of (14) or (15) is discarded

if Vn(t) or l.(t) is the last member of R. The equations of sets

(1) or (2) are retained because these differential equations

form boundary conditions on the partial differential equa-

tions of the ETL represented by (14) and (15). The collective

set of differential equations as modified are numerically

integrated with suitable initial conditions to obtain the

dynamic response of the system.

METHOD OF CHARACTERISTICS

Partial differential equations (8) and (9) which govern the

ETL are of the hyperbolic type [19]. Hyperbolic partial

differential equations have the property that they can propa-

gate discontinuities along certain or characteristic lines in

their solution space. The solution space is a semi-infinite

strip in the x,t plane defined by

O<x<l ,O<t< co.

The characteristic lines of the ETL are x + t = constant and

x – t= constant, The characteristic lines suggest new co-

ordinates as

<=t+x flat-x (16)

so that t = constant and q = constant are the character-

istics of the partial differential equations. Transforming (8)

and (9) to <,q coordinates by (16) then adding and subtract-

ing yields

jAt

(i-l) At

P /4

--@+’ /

/

0

—

/x=t

/

(i-1) Ax iAx ~+1) Ax 1

Fig. 2. Solution space for an ETL.

solution space x,t. Only the special case of zero initial values

of V(x,t) and l(x,t)and constant values of R(x) and G(x) as

R. and Go along the ETL will be considered.

Because the waveform travels down the line with a

velocity of one (in this set of dimensionless coordinates),

both V(x,t) and I(x,t) are zero until t > x. To develop the

numerical method of treating the ETL, the line is first

divided into a number, n, of equal-length intervals. The

solution is calculated at time O, At, 2At, . . . . where At is

numerically equal to the length of the intervals along the

line, because the electrical signal travels one step along the

line in a period of time

At= l/n.

Assuming that the solution is known at t = (j – I)At,

calculate V and I along the line at t= jAt. The solution will

be evaluated at the stations x = iAx along the line and will

be designated as

V(iAx,jAt) = V{

l(iAx,jAt) = 1{

ifi>j,

For O < i < n and j > i, the solution space sketched in Fig. 2

is considered. Equation (17) is integrated along the q line

from A t~ P

This method is based upon the form of (17) and (18). In

particular, the presence of partial derivatives with respect to

& only in (17) and with respect to q only in (18) allows them

to be integrated approximately along constant q lines and

constant { lines, respectively. This process willl yield alge-

braic equations for the calculation of Vand I at a point in the

779

x

G

++ ][ ROI -I- GOZOeD(4-”)V] d~ = O (19)
~A

where

<A= (i – l)Ax + (j– l)At

~,= iAx + jAt

q = jAt – iAx.
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Equation (18) is integrated along the & line from B to P

~P
++ J[ GOZOep(<-”)V – ROZ] dq = O (20)

VB

where

q~= (j– l)At– (i+ l)Ax

qP = jAt – iAx

~ = iAx -I- jAt.

The trapezoidal rule

J“f(x)dx =+[f(xB)+f(xA)](~B- ~A)
XA

is used to evaluate the integrals so that (19) and (20) can be

(21)

Go 20
All = 1 + ~Axe2i@

Alz = ~[ROAx + 20 ezfli~(l + e-2 fl&)]

/i21 = A~2

A22 = –~[ROAx + ZOe2fliAX(l + e- 2DAX)]

Equation (21) holds for j z 1, 1< i < n – 1 with j > i,

Under these conditions, equation (21) can be solved for V{

and 1{ in terms of V;:;, V{;!, Ij:f, and I{ji. Thus the two

new values at x = iAx can be evaluated in terms of the volt-

age and current at t = (j – l)At at the positions x =

(i – l)Ax and x = (i+ l)Ax. This limited domain of depen-

dence of the solution of the transmkion-lhm equations k

another property of hyperbolic partial differential equa-

tions. Equation (21) cannot determine the solution at the

sending end and the receiving end of the ETL without con-

sidering the nonlinear differential equations (1) and (2)

which govern the terminal networks.

At the sending end of the ETL the first equation of (21) is

not valid because no q line goes from the point x = O back

into the solution space of the ETL. Thus this equation must

be discarded at x = O.The second equation of (21 ) together

with (1) of the sending network can be integrated to obtain

V{and 1{. Similarly at x = 1 the second equation of (21 ) must

be discarded; equation (2) along with the first equation of

(21) furnishes the needed information to calculate V{and Ii.

NUMERICAL RESULTS AND CONCLUSIONS

The two distinct methods of analysis based upon cubic

spline representation and characteristics were used to calcu-

late the response of a particular exponentially tapered

transmission line with a nonlinear sending network and with

the receiving network as just a resistive load. The sending

network was a simple transistor circuit. The state vector S(t)

contained the two loop currents and two transistor model

parameters associated with the equivalent circuit. The cur-

rent in the second loop of the sending network is the input

current to the ETL.

Digital computer programs were written for the two

approaches to the system response. In both programs, the

numerical integration was done by a fourth-order Runge–

Kutta subroutine. Because the primary concern of this work

is the analysis of the ETL, the sending network will not be

described in detail. The sending network generates a signal

that is input to the ETL; the waveform is transmitted down

the line; and the network at x = 1 receives the output signal.

Of interest here is the evaluation of the ability of these two

methods to calculate numerically the solution of the partial

differential equations which govern the ETL, For this reason

the numerical results will be limited to a comparison of the

output voltage with the input voltage and a presentation of

the voltage waveform as it travels down the transmission

line.

The output voltage and input voltage calculated by the

cubic spline representation are presented in Fig. 3. The

signals are not smooth and appear to be the sum of the true

response and some noise which is a result of the numerical

process used to’calculate them. The rise time of the output

voltage is approximately twice as long as the rise time of

the input signal. The voltages are normalized so that

the maximum input voltage is unity. The maximum output

voltage is 7.79.

Fig. 4 presents the voltage waveform as it travels down the

ETL. The noise described is evident in these signals. The

vertical dashed lines mark the position to which the signal

should have propagated in the time indicated. The fact that

the signals are not zero at the marked positions indicates

the presence of “forerunners.” Because the signals cannot

physically travel past the marked positions, these forerun-

ners are evidence of calculation errors.

similar numerkal results were calculated by the method

of characteristics. Fig. 5 gives the comparison of the output

and input voltage of the ETL obtained by this method. The

responses are very smooth. The rise time of the output signal

is the same as that of the input signal. The maximum voltage

obtained is 7.50. Fig. 6 depicts the voltage waveform as it

travels down the transmission line. The calculation method

assures the absence of forerunners.

Comparing the numerical results obtained by the two

methods of treating the ETL with terminal networks leads to

the following conclusions.

1) The method of characteristics maintains the rise time
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Fig. 3. Comparison of output voltage and input voltage calculatedly cubic spline representation.
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Fig.4. Voltage waveforms calculated bycubic spline representation.
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Fig. 6. Voltage waveforms calculated by the method of characteristics.
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of the signal as it travels the length of the transmission line.

The cubic spline method does not.

2) The cubic spline method produces dikcretization

ripple in the response. This discretizing error is similar to

that caused by replacing continuous systems by a lumped-

parameter discrete system.

In addition to comparing the numerical results, some-

comments are in order with regard to the efficiency and

storage requirements of the two methods.

1) The cubic spline method requires the integration of

two first-order differential equations at each node along the

transmission line. The system treated had four variables in

the sending network with 51 nodes for a total of 106

first-order differential equations to integrate. With51 nodes,

the program required in excess of 25000 storage locations.

The integration of the response required over 5 min of

computation time on the CDC 6600 computer.

2) Using the method of characteristics, the voltage and

current were calculated at 501 stations along the transmis-

sion line. To calculate the voltage and current at a given

position for the new value of time requires the solution of

two simultaneous algebraic equations. The program

required approximately 10000 storage locations. A typical

run required less than 60 s of computation time.

From the preceding comparisons, it is clear that the

method of characteristics is the superior of these two

methods of computation.
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