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Transient Analysis of Systems with Exponential
Transmission Lines

JAMES L. HILL anp DAVID MATHEWS

Abstract—Two computer solutions are given for pulse propaga-
tion along exponentially tapered transmission lines with arbitrary
nonlinear sending and receiving networks. The solutions allow series
and shunt loss terms per unit of length of the line. The method of
characteristics is shown to be computationally superior to the cubic
spline method in terms of accuracy and efficiency.

INTRODUCTION

HE LITERATURE on the transient analysis of systems
Tconnected by transmission lines is rich indeed. Methods
of analysis include Laplace transforms [1], finite differences
[2], [3], and Bergeron’s method of characteristics [4], [5]. The
method of characteristics was extended to treat
transmission-line problems with ground return (frequency-
dependent parameters) [6], [7]. The Laplace transform
method is limited to transmission lines with particular end
conditions. The finite-difference solutions suffer from
discretization ripple associated with replacing a distributed
system by a lumped-parameter one. The method of charac-
teristics maintains the wave character of the solutions and
allows the ends to be terminated by general networks.

The exponential transmission line (ETL) has received
considerable attention in the past four decades as an
example of nonuniform transmission lines. A historical
bibliography [8] establishes the literature available up to
1955. Applications of nonuniform and, in particular, expo-
nential transmission lines have included impedance match-
ing sections [9]-[11], traveling wave transformers, and res-
onators[12],[13]. In all of the previously cited literature, the
ETL was investigated in the frequency domain. Transients
in nonuniform lines have been attacked by transform
methods for special end conditions [14]. A moment method
has been employed to treat lines with linear taper [15].

The application that prompted this work involved an
ETL as a transformer between a nonlinear sending network
and a linear receiving network. The transient response of
this system was required. To treat this problem, two
methods of analysis were considered: cubic spline represen-
tation [16] and Bergeron’s characteristics [17].

The transient-response problem is solved by the two
approaches (splines and characteristics). The spline method
suffers from the same discretization ripple found in finite-
difference solutions and is less computationally efficient
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than the method of characteristics. The method of character-
istics does not produce the troublesome ripple and it
maintains the rise time of the propagating pulse.

THE DYNAMIC SYSTEM

The dynamic system of interest consists of a sending
network and a receiving network connected by an ETL. The
system is sketched in Fig. 1. 8(¢,),R(z,) are the state vectors
of the sending and receiving networks. The functions F( ,.S)
and F(t,,R) are vector-valued functions which define the
derivatives of S(t,) and R(r,). The last member of the state
vector S(¢;) must be either the input voltage V(0.,) or
current I(0.t,) of the ETL. Likewise, the output voltage
V(lLt,)or current I(lt,) must be the last member of the state
vector R(t;). The functions F(t,,8) and F(t,,R) may be
nonlinear.

GOVERNING EQUATIONS OF THE SYSTEM

The sending and receiving networks are governed by sets
of nonlinear first-order differential equations of the follow-
ing form:

S = F(t,,5) (1)

and
R=F/(t.R) @)

where the functions F,(¢,,5) and F(t,,R) are sufficiently
smooth to insure the existence of unique solutions to the
initial value problem.

The ETL is governed by the standard transmission-line
equations as given by Johnson [18]:

av al
— —+RI=0 3
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b = 4
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where V(x,t,) and I(x,t;) have been previously defined,
and C(x,), L(x,), R(x;),and G(x ) are the shunt capacitance,
series inductance, series resistance, and shunt conductance
per unit of length of the line, respectively.

For an ETL, the electrical properties vary as follows:

C(Xl) = C0e~azx1
L(xl) = LO €m1
R(x,) and G(x,) are arbitrary (5)

where C, and L, are the values of the capacitance and
inductance at x, = 0. The parameter « defines the taper of
the ETL.
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Fig. 1.

For convenience, dimensionless spatial and temporal

coordinates are introduced into (3)}-(5) by the
transformation
x,=Ix t; = LoCylt. (6)
Equation (5) becomes
C(x) = Cye 2F~
L(x) = Lye**
R(x) = IR(x1)
G(x) = IG(x1) (7)
where
f=al2.
Equations (3) and (4) become
O+ Z() 2+ R =0 @)
O+ G)Z(Y + Z(x) = 0 o)
where

L
Z(x)= | C—Z e2F* = Z,e2#~,

Because the speed of propagation of a weak® signal along
a transmission line is given by

¢p = [L(x1)C(x1)]" V2 = (Lo Co)~ 12

itis constant for an ETL. The unit of the dimensionless time ¢
corresponds to the time required for a signal to propagate a
distance [ along the ETL.

The calculation of the dynamic response of the ETL with
nonlinear terminal networks requires the solution of the sets
of ordinary differential equations (1) and (2) and partial
differential equations (8) and (9). Numerically, the set of
ordinary differential equations presents no difficulties; the
equations can be solved by any standard method of numeri-
calintegration. The partial differential equations are treated
here by two distinctly different methods: 1) cubic spline
representation of the spatial variation and 2) the method of

! Continuous across the wavefront but has a discontinuity in the first
derivative.

The dynamic system.

characteristics. The cubic spline representation reduces the
partial differential equations to sets of linear ordinary
first-order differential equations. The method of character-
istics involves integrating the partial differential equations
along their characteristics. These two approaches are pre-
sented in the next two sections.

CuBIC SPLINE REPRESENTATION

The voltage V(x,t) and current I(x,t) are discretized by
their values at a set of nodes along the ETL. The functions
V(x,t) and I(x,t) are assumed to vary as cubic spline
functions ¢ (x) defined for the set of nodes x; on the interval
0 < x < 1 as described by Ahlberg et al. [16]. The functions
¢(x) are sectionally cubic and have continuous derivatives
through the second order over the interval 0 < x < 1. The
spline functions ¢,(x) take on the values of the Kronecker
delta

1
0,

j=

for ,k=1,2,-",n
jEk /

bi{xi) = 05 =
at the nodes and all have vanishing second-order derivatives
at x = 0 and x = 1. This will allow the functions V(x,t) and
I(x,t) to have nonzero values and slopes at the ends of the
ETL.

The functions V(x,t) and I(x,t) are approximated as

Vo) = 3 6,70 (10)
160 = % 4,10 (11)

The unknowns V{t)and I (¢) are the physical values of V(x,t)
and I(x,t) at the node x;. Substituting (10) and (11) into (8)
and (9) yields

_i [0/ ()V; + Z(x)p )] ; + R(x)p (x)I ] = e, (x,t)(12)
.; [6,(x)V; + G(x)Z(x)o(x)V; + Z(x)bj(x)] ]
= ey(x,t). (13)

Equations (12) and (13) are not identically satisfied as
indicated by the error terms e (x,t) and e,(x,t). Obtaining a
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determinate set of equations requires that the errors e (x,t)
and e,(x,t) vanish at the nodes x;,i = 1,2, -, n. This yields

Z XV + Z(x); + R(x)[; =0 (14)
Vi+ G(x;)Z(x)V; +iZ x); =0,
i=1,2-,n (15

Equations (14) and (15) represent a set of first-order linear
differential equations for the determination of V(t)and I (t).

Equations (1), (2), (14), and (15) now represent the total
system. There is a certain redundancy in this collective set of
equations. Because either V;(t) or I,(t) is a member of the
state vector S(¢) of the sending network, equation (1)
furnishes an expression for either V; or I,, depending upon
which is included in S. If V(t) is the last member of S, the last
of (1) for V,is used and the first of (14) is discarded. On the
other hand, if I, is a member of S, the first of (15) is
discarded. Likewise, either the last of (14) or (15)is discarded
if V,(¢) or I,(¢)is the last member of R. The equations of sets
(1) or (2) are retained because these differential equations
form boundary conditions on the partial differential equa-
tions of the ETL represented by (14) and (15). The collective
set of differential equations as modified are numerically
integrated with suitable initial conditions to obtain the
dynamic response of the system.

METHOD OF CHARACTERISTICS

Partial differential equations (8) and (9) which govern the
ETL are of the hyperbolic type [19]. Hyperbolic partial
differential equations have the property that they can propa-
gate discontinuities along certain or characteristic lines in
their solution space. The solution space is a semi-infinite
strip in the x,t plane defined by

O0<x<l O<t<oo.

The characteristic lines of the ETL are x + ¢t = constantand
x — t = constant. The characteristic lines suggest new co-
ordinates as

E=t+x (16)

so that £ = constant and » = constant are the character-
istics of the partial differential equations. Transforming (8)
and (9) to £, coordinates by (16) then adding and subtract-
ing yields

oV ol

T 2en %+ ; +3[REN+GEnZEn =0 (17)

This method is based upon the form of (17) and (18). In
particular, the presence of partial derivatives with respect to
¢ only in (17) and with respect to 5 only in (18) allows them
to be integrated approximately along constant # lines and
constant ¢ lines, respectively. This process will yield alge-
braic equations for the calculation of ¥ and I at a point in the

n=t—x
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Fig. 2. Solution space for an ETL.

solution space x,t. Only the special case of zero initial values
of V(x,t) and I(x,t) and constant values of R(x) and G(x) as
R, and G, along the ETL will be considered.

Because the waveform travels down the line with a
velocity of one (in this set of dimensionless coordinates),
both V(x,t) and I(x,t) are zero until t > x. To develop the
numerical method of treating the ETL, the line is first
divided into a number, n, of equal-length intervals. The
solution is calculated at time 0, At, 2A¢, -+, where At is
numerically equal to the length of the intervals along the
line, because the electrical signal travels one step along the
line in a period of time

At = 1/n.

Assuming that the solution is known at t = (j — 1)As,
calculate V and I along the line at ¢t = jAz. The solution will
be evaluated at the stations x = jAx along the line and will
be designated as

V(iAx,jAt) = Vi
I(iAx,jAt) = I}
ifi> ],
Vi=1Ii=0.

For 0 < i < mandj > i, the solution space sketched in Fig, 2
is considered. Equation (17) is integrated along the # line
from A to P

. . < oI
Vi_— ypi-1 BE—n) __
i 71 J(:A Zoe K 05 dé

+4 [Rol + GoZoe" S ™V] dE =0 (19)
<4
where

Ea=(i—DAx + (j — 1)At
n = jAt — iAx.
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Equation (18) is integrated along the & line from B to P

. . e ol
Vi-Vizh= | Zoe™ = dn
B

14

np
+1 j [GoZoe" S ™V — RoI] dy=0 (20)

np

where
ng=(j — 1)At — (i + 1)Ax
np = jAt — iAx
& =iAx + jAt.
The trapezoidal rule

[ ) dx 41 (x0) + £ o — .

x4

is used to evaluate the integrals so that (19) and (20) can be
written as
Ay Vi+ Apli=b,
Az V{+A221{=b2 (21)

where
Z .
Ay =1+ —Gﬁz—"Aer‘ﬂM
Ayy = 3RoAx + Zo e 45(1 + e 2P4%)]
A21 = A12
Ayy = —3[RoAx + Zge® 251 + ™ 24)]

1 - GoZo Axe?#i-Dax | pi-1
J

+ 3[Zo P21 + e”2P4) — Ry Ax])IiZ 1

by = |1 —G°2Z° Axe2hu+ Dax

—3[Z, 2P (1 + *P2) — Ry Ax]HT 1.

Equation (21) holds for j>1, 1<i<n—1 with j> i
Under these conditions, equation (21) can be solved for V/
and I{ in terms of VIZ1, Vi71, IiZ1, and Ii7 1. Thus the two
new values at x = iAx can be evaluated in terms of the volt-
age and current at ¢ = (j — 1)At at the positions x =
(i — 1)Ax and x = (i + 1)Ax. This limited domain of depen-
dence of the solution of the transmission-line equations is
another property of hyperbolic partial differential equa-
tions. Equation (21) cannot determine the solution at the
sending end and the receiving end of the ETL without con-
sidering the nonlinear differential equations (1) and (2)
which govern the terminal networks.

At the sending end of the ETL the first equation of (21) is
not valid because no # line goes from the point x = 0 back
into the solution space of the ETL. Thus this equation must
be discarded at x = 0. The second equation of (21) together
with (1) of the sending network can be integrated to obtain
Viand I Similarly at x = 1 the second equation of (21) must
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be discarded; equation (2) along with the first equation of
(21) furnishes the needed information to calculate V4 and I,

NUMERICAL RESULTS AND CONCLUSIONS

The two distinct methods of analysis based upon cubic
spline representation and characteristics were used to calcu-
late the response of a particular exponentially tapered
transmission line with a nonlinear sending network and with
the receiving network as just a resistive load. The sending
network was a simple transistor circuit. The state vector S(t)
contained the two loop currents and two transistor model
parameters associated with the equivalent circuit. The cur-
rent in the second loop of the sending netwark is the input
current to the ETL.

Digital computer programs were written for the two
approaches to the system response. In both programs, the
numerical integration was done by a fourth-order Runge-
Kutta subroutine. Because the primary concern of this work
is the analysis of the ETL, the sending network will not be
described in detail. The sending network generates a signal
that is input to the ETL ; the waveform is transmitted down
the line; and the network atx = 1 receives the output signal.
Of interest here is the evaluation of the ability of these two
methods to calculate numerically the solution of the partial
differential equations which govern the ETL. For this reason
the numerical results will be limited to a comparison of the
output voltage with the input voltage and a presentation of
the voltage waveform as it travels down the transmission
line.

The output voltage and input voltage calculated by the
cubic spline representation are presented in Fig. 3. The
signals are not smooth and appear to be the sum of the true
response and some noise which is a result of the numerical
process used to’'calculate them. The rise time of the output
voltage is approximately twice as long as the rise time of
the input signal. The voltages are normalized so that
the maximum input voltage is unity. The maximum output
voltage is 7.79.

Fig. 4 presents the voltage waveform as it travels down the
ETL. The noise described is evident in' these signals. The
vertical dashed lines mark the position to which the signal
should have propagated in the time indicated. The fact that
the signals are not zero at the marked positions indicates
the presence of “forerunners.” Because the signals cannot
physically travel past the marked positions, these forerun-
ners are evidence of calculation errors.

Similar numerical results were calculated by the method
of characteristics. Fig. 5 gives the comparison of the output
and input voltage of the ETL obtained by this method. The
responses are very smooth. The rise time of the output signal
is the same as that of the input signal. The maximum voltage
obtained is 7.50. Fig. 6 depicts the voltage waveform as it
travels down the transmission line. The calculation method
assures the absence of forerunners.

Comparing the numerical results obtained by the two
methods of treating the ETL with terminal networks leads to
the following conclusions.

1) The method of characteristics maintains the rise time
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Fig. 3. Comparison of output voltage and input voltage calculated by cubic spline representation.
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Fig. 4. Voltage waveforms calculated by cubic spline representation.
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Fig. 5. Comparison of output voltage and input voltage calculated by the method of characteristics.
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Fig. 6. Voltage waveforms calculated by the method of characteristics.
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of the signal as it travels the length of the transmission line.
The cubic spline method does not.

2) The cubic spline method produces discretization
ripple in the response. This discretizing error is similar to
that caused by replacing continuous systems by a lumped-
parameter discrete system.

In addition to comparing the numerical results, some
comments are in order with regard to the efficiency and
storage requirements of the two methods.

1) The cubic spline method requires the integration of
two first-order differential equations at each node along the
transmission line. The system treated had four variables in
the sending network with 51 nodes for a total of 106
first-order differential equations to integrate. With 51 nodes,
the program required in excess of 25000 storage locations.
The integration of the response required over 5 min of
computation time on the CDC 6600 computer.

2) Using the method of characteristics, the voltage and
current were calculated at 501 stations along the transmis-
sion line. To calculate the voltage and current at a given
position for the new value of time requires the solution of
two simultaneous algebraic equations. The program
required approximately 10000 storage locations. A typical
run required less than 60 s of computation time,

From the preceding comparisons, it is clear that the
method of characteristics is the superior of these two
methods of computation.
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